剂量体积直方图(DVH)指标是诊所中广泛接受的评估标准。但是,将这些指标纳入深度学习剂量预测模型,这是由于其非跨性别性和非差异性而具有挑战性的。我们提出了一种基于力矩的新型损失功能,用于预测具有挑战性的常规肺强度调节疗法(IMRT)计划的3D剂量分布。基于力矩的损耗函数是凸面和可区分的,并且可以轻松地将DVH指标合并到没有计算开销的任何深度学习框架中。也可以定制这些矩,以反映3D剂量预测中的临床优先级。例如,使用高阶矩可以在高剂量区域中更好地预测串行结构。我们使用了360的大型数据集(240次培训,50次进行验证,70次进行测试),使用2GY $ \ times $ 30分数的常规肺部患者使用我们机构的临床治疗计划来训练深度学习(DL)模型。我们使用计算机断层扫描(CT),计划目标体积(PTV)和风险风险轮廓(OAR)培训了UNET,例如CNN体系结构,以推断相应的素素3D剂量分布。我们评估了三种不同的损失函数:(1)流行的平均绝对误差(MAE)损失,(2)最近开发的MAE + DVH损失,以及(3)提出的MAE +矩损失。使用不同的DVH指标以及剂量得分和DVH得分比较了预测的质量,该指标最近由AAPM知识的计划大挑战挑战。具有(MAE +力矩)损耗函数的模型通过显着提高DVH得分(11%,p $ <$ 0.01),而具有相似的计算成本,从而超过了MAE损失的模型。它还优于接受(MAE+DVH)训练的模型,它可以显着提高计算成本(48%)和DVH得分(8%,p $ <$ 0.01)。
translated by 谷歌翻译
Due to the high activation sparsity and use of accumulates (AC) instead of expensive multiply-and-accumulates (MAC), neuromorphic spiking neural networks (SNNs) have emerged as a promising low-power alternative to traditional DNNs for several computer vision (CV) applications. However, most existing SNNs require multiple time steps for acceptable inference accuracy, hindering real-time deployment and increasing spiking activity and, consequently, energy consumption. Recent works proposed direct encoding that directly feeds the analog pixel values in the first layer of the SNN in order to significantly reduce the number of time steps. Although the overhead for the first layer MACs with direct encoding is negligible for deep SNNs and the CV processing is efficient using SNNs, the data transfer between the image sensors and the downstream processing costs significant bandwidth and may dominate the total energy. To mitigate this concern, we propose an in-sensor computing hardware-software co-design framework for SNNs targeting image recognition tasks. Our approach reduces the bandwidth between sensing and processing by 12-96x and the resulting total energy by 2.32x compared to traditional CV processing, with a 3.8% reduction in accuracy on ImageNet.
translated by 谷歌翻译
Spiking Neural networks (SNN) have emerged as an attractive spatio-temporal computing paradigm for a wide range of low-power vision tasks. However, state-of-the-art (SOTA) SNN models either incur multiple time steps which hinder their deployment in real-time use cases or increase the training complexity significantly. To mitigate this concern, we present a training framework (from scratch) for one-time-step SNNs that uses a novel variant of the recently proposed Hoyer regularizer. We estimate the threshold of each SNN layer as the Hoyer extremum of a clipped version of its activation map, where the clipping threshold is trained using gradient descent with our Hoyer regularizer. This approach not only downscales the value of the trainable threshold, thereby emitting a large number of spikes for weight update with a limited number of iterations (due to only one time step) but also shifts the membrane potential values away from the threshold, thereby mitigating the effect of noise that can degrade the SNN accuracy. Our approach outperforms existing spiking, binary, and adder neural networks in terms of the accuracy-FLOPs trade-off for complex image recognition tasks. Downstream experiments on object detection also demonstrate the efficacy of our approach.
translated by 谷歌翻译
有效的自定义合并技术可以积极地修剪特征图的尺寸,从而减少用于资源约束计算机视觉应用程序的推理计算和内存足迹,最近已获得了显着的牵引力。但是,先前的合并作品仅提取激活图的局部环境,从而限制了它们的有效性。相比之下,我们提出了一种新型的非本地自我煽动合并方法,该方法可用作标准合并层的液位替换,例如最大/平均池或跨性别卷积。所提出的自我发项模块使用斑块嵌入,多头自我注意力和空间通道恢复,然后进行乙状结肠激活和指数软效果。这种自我注意的机制有效地聚集了在下采样过程中非本地激活斑之间的依赖性。具有各种卷积神经网络(CNN)体系结构的标准对象分类和检测任务的广泛实验证明了我们所提出的机制优于最先进的(SOTA)合并技术。特别是,我们超过了在Imabilenet-V2上不同变体上的现有合并技术的测试准确性,平均平均为1.2%。随着初始层中激活图的激进下采样(可减少记忆消耗的22倍),与具有ISO-MEMORY足迹的SOTA技术相比,我们的方法的测试准确性提高了1.43%。这使我们的模型可以在内存受限的设备中部署,例如微型控制器(不会失去明显的精度),因为初始激活映射会消耗大量的芯片内存储器,用于复杂视觉任务所需的高分辨率图像。我们提出的合并方法还利用了通道修剪的想法,以进一步减少记忆足迹。
translated by 谷歌翻译